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Iterative method to improve the Mott-Smith shock-wave structure theory

Young Gie Ohr
Department of Chemistry, Paichai University, Taejon 302-735, Republic of Korea

~Received 25 August 1997!

In order to improve the Mott-Smith theory for shock-wave structures, an iterative method is introduced. The
method is basically one of the family of iterative schemes constructed by Ikenberry and Truesdell@J. Rat.
Mech. Anal.5, 1 ~1956!#. In the present work, the initial values for the iteration are calculated by using the
Mott-Smith bimodal function@Phys. Rev.82, 885 ~1951!#; the equilibrium Maxwellian function is used in
conventional Ikenberry-Truesdell–type approaches. The density profile in the first iterative step for monatomic
Maxwellian molecular gases has been obtained in a closed form. Within the limitation of the lowest-order
calculation, the results show asymmetric density profiles, the correct shock thickness limiting law at the weak
limit, and nonmonotonic kinetic temperature profiles even for monatomic molecules.
@S1063-651X~98!08802-3#
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I. INTRODUCTION

During the past half century much research has addre
the shock-wave structure problem using the pioneering w
of Mott-Smith. Mott-Smith@1# pointed out that the distribu
tion function of molecular velocities in a strong shock wa
in a gas is bimodal. This can be rewritten as

f MS~v,x!5n~x! f M
~u!~v!1@12n~x!# f M

~d!~v!, ~1!

where f M
(u)(v) and f M

(d)(v) are the upstream and downstrea
Maxwellian distribution functions, respectively, andn(x) is
the unknown quantity obtained from the Boltzmann eq
tion. The Monte Carlo experiments and the direct numer
analyses of the Boltzmann equation indicate that the bimo
function represents the actual velocity distribution of m
ecules quite well in strong shock layers@2#. Because of its
remarkable simplicity and its correct predictions in stron
shock-wave experiments, the Mott-Smith theory has b
applied to a wide area of shock phenomena@3,4# including
the shock structures of dense gases@5# and relativistic shocks
@6#. However, there are two nontrivial deficiencies in t
theory. The first is the lack of a unique way to determine
unknown quantityn(x). Usually then(x) is determined from
a moment equation given by the Boltzmann equation. T
choice of velocity moment is to an extent arbitrary, but t
result depends markedly on this choice@7#. The second de-
ficiency is the incorrect shock thickness limiting law at
weak shock. Since the Navier-Stokes theory is believed to
exact at the weak shock limit, the discrepancy between
Mott-Smith and the Navier-Stokes limiting laws has be
noted and the former deemed incorrect@8#.

Although different approaches have attempted to impr
the Mott-Smith theory@9–14#, we propose an alternativ
method to eliminate both deficiencies of the Mott-Sm
theory @15#. Our method is based on the iterative approa
first used by Maxwell and later systematically developed
Ikenberry and Truesdell@16,17#. The Maxwell-Ikenberry-
Truesdell~MIT ! approach employs the Maxwellian distribu
tion function for the initial values in beginning the iteratio
In the present work, we use the Mott-Smith bimodal dis
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bution function to calculate these values and follow the M
iteration procedure, restricting ourselves to the first iterat
for monatomic Maxwellian molecules.

II. FORMULATION OF SHOCK-WAVE PROBLEM

It is customary to start by writing down the hydrodynam
equations for the one-dimensional steady state

d

dx
~rux!50, ~2a!

rux

dux

dx
1

d

dx
~Pxx1p!50, ~2b!

rux

dE
dx

1
dQx

dx
1~Pxx1p!

dux

dx
50, ~2c!

wherer is the mass density,ux the streaming velocity,Pxx
the normal viscous stress,p the pressure,E the internal en-
ergy density, andQx the heat flux. For monatomic dilute
gases,E is related to the kinetic temperatureT by dE/dx
5cvdT/dx in which cv5 3

2 kB /m with the Boltzmann con-
stantkB and the molecular massm.

Integrating both sides of Eqs.~2! from x52` ~equilib-
rium upstream by definition! to a certainx, one obtains

rux5r~u!ux
~u! , ~3a!

rux
21Pxx1p5r~u!~ux

~u!!21p~u!, ~3b!

ruxcvT1Qx1~Pxx1p!ux1 1
2 rux

3

5r~u!ux
~u!cvT~u!1ux

~u!p~u!1 1
2 r~u!~ux

~u!!3, ~3c!

in which the superscript (u) denotes the quantity of the up
stream. It is convenient to introduce the dimensionless qu
tities

r̃ [r/r~u!, ũ[ux /ux
~u! , T̃[T/T~u!,
1723 © 1998 The American Physical Society
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p̃[p/r~u!~ux
~u!!2, P̃[Pxx /r~u!~ux

~u!!2,

Q̃[Qx /r~u!~ux
~u!!3, B[kBT~u!/m~ux

~u!!2.

Since p̃5B r̃ T̃, Eqs.~3! are rewritten as

r̃ ũ51, ~4a!

ũ1P̃1B r̃ T̃511B, ~4b!

5BT̃12Q̃12 ũP̃1 ũ25115B. ~4c!

The parameterB is related to the Mach number of the u
stream velocityM through

M[ux
~u!/Us5S 3

5BD 1/2

, ~5!

whereUs is the sound speed in the upstream, which is eq
to (5kBT(u)/3m)1/2 for monatomic dilute gases@8#. The equi-
librium values in the upstream and downstream are imm
ately obtained by solving Eqs.~4! simultaneously becaus

both P̃ and Q̃ vanish. In order to have the values in th
shock layer, however, one has to know about the nonvan

ing P̃ and Q̃, which are to be calculated by the iterativ
method.

III. THE MIT ITERATION

Ikenberry and Truesdell@16,17# constructed a family of
iterative methods that extracts with successive approxi
tions the mathematical relations between the physical qu
tities of gases from the Boltzmann equation. One membe
the family they called the ‘‘Maxwell iteration’’ constitute
the basic method, which we will follow in this paper. We c
start by writing down the one-dimensional moment equati
for Pxx andQx ,

dR~3!

dx
2

2

3

dQx

dx
1ux

dPxx

dx
1

1

3
~7Pxx14p!

dux

dx
5L~P!,

~6a!

dR~4!

dx
12ux

dQx

dx
2

1

r
~2Pxx15p!

d

dx
~Pxx1p!

12~R~3!12Qx!
dux

dx
5L~Q!. ~6b!

The moments in Eqs.~6! are defined by the velocity distri
bution function in the kinetic theory of gases as

p5E 1

3
mC2f dC, ~7a!

Pxx5E m~Cx
22 1

3 C2! f dC, ~7b!

Qx5E 1

2
mCxC

2f dC, ~7c!
al
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R~3!5E mCx
3f dC, ~7d!

R~4!5E mCx
2C2f dC, ~7e!

in which C is the peculiar velocity of molecules.L (P) and
L (Q) in Eqs.~6! are derived from the collision integral of th
Boltzmann equation. As for the monatomic Maxwellian mo
ecules@17#, these are written as

L~P!52
p

h
Pxx , ~8a!

L~Q!52
4p

3h
Qx , ~8b!

whereh is the viscosity. In the MIT iteration scheme, on
calculates the new right-hand-sides values~the collision
terms! using the old left-hand sides~the streaming terms! in
Eqs. ~6!. One needs the equations ofR(3) and R(4) for the
second iteration and more equations for higher step ite
tions. Using the dimensionless quantities, Eqs.~6! are rewrit-
ten in iterative form

dR̃@r #
~3!

d x̃
2

2

3

dQ̃@r #

d x̃
1 ũ

dP̃@r #

d x̃
1

1

3
~7P̃@r #14 p̃ @r #!

d ũ

d x̃

52
8

5S 2B

p D 1/2

r̃ P̃@r 11# , ~9a!

dR̃@r #
~4!

d x̃
12 ũ

dQ̃@r #

d x̃
2

1

r
~2P̃@r #15 p̃ @r #!

d

d x̃
~P̃@r #1 p̃ @r #!

12~R̃@r #
~3!12Q̃@r #!

d ũ

d x̃
52

32

15S 2B

p D 1/2

r̃ Q̃@r 11# ~9b!

for the (r 11)th iteration, wherex̃ is the reduced distanc
scaled by the upstream mean free pathl, which is an effec-
tive free path@8# established by substituting the theoretic
viscosity of the Maxwellian molecules into a hard-sphe
relationship between the mean free path and the visco
R̃(3)[R(3)/r(ux

(u))3 and R̃(4)[R(4)/r(ux
(u))4.

The first iteration corresponds to the lowest-order cal
lation thatr 50 in Eqs.~9!. The initial values for the iteration
are calculated by the definitions of velocity moments giv
in Eqs.~7! with the help of the bimodal distribution function
Since the bimodal function has only one unknown quan
n, all the initial values in the streaming terms of Eqs.~9! are
expressed in its functionals. Without any difficulties, the
dependent variable can be changed fromn to r̃ . After some
algebraic manipulations, one obtains the first iterates as

1

8
~115B!~11B!

d r̃

d x̃
5

8

5S 2B

p D 1/2

r̃ P̃@1# , ~10a!
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115B

32r̃
@ r̃ ~1210B15B2!18~11B!#

d r̃

d x̃

52
32

15S 2B

p D 1/2

r̃ Q̃@1# . ~10b!

The first iteration implies that the streaming terms in Eqs.~9!
are approximated by the values of the bimodal distribut
function to find the unknown collision terms. The obtain

valuesP̃@1# andQ̃@1# are used in the hydrodynamic equatio
~4! to get the shock profiles. After some rearranging, we h
the equation

d r̃

d x̃
5

512

15 S 2B

p D 1/2 ~ r̃ 21!~425B r̃ 2 r̃ !

~115B!@ r̃ ~1210B15B2!116~11B!#
.

~11!

Let us define a normalized density

r* [~r2r~u!!/~r~d!2r~u!!

and take the originx50 as the point wherer* 5 1
2. Then the

solution of Eq.~11! is written as

r* /~12r* !a1152aexp~b x̃!, ~12!

where

a5
~325B!~1210B15B2!

~115B!~1716B15B2!
~13!

and

b5
512

15 S 2B

p D 1/2 325B

~115B!~1716B15B2!
. ~14!

Equation~12! is the main result of the present study. T
profiles of the other quantities are obtained from Eqs.~4! and
~10! with the use of Eq.~12!.

IV. DISCUSSION

It should be noticed that the density profile shape given
Eq. ~12! is asymmetric. It has been argued that the symm
ric density profile from the original Mott-Smith theory is
defect in the theory because experimental density profiles
asymmetric for all Mach numbers@18#. The shock thickness
D is defined by using the maximum density slope as

D[~r~d!2r~u!!Y Udr

dxU
max

and the dimensionless reciprocal thicknessl/D is a param-
eter that is used for comparing calculations to experime
SinceB in Eqs.~13! and~14! is related to the Mach numbe
through Eq.~5!, the limiting properties of the shock profile
are evaluated immediately. ForM→1, the reciprocal thick-
ness takes the form

l/Dweak5
4

7S 6

5p D 1/2

~M21!,
n

e

y
t-

re

s.

which is in exact accord with the Navier-Stokes theory@8#.
In order to compare the results of this work with the va

ues for the Maxwellian molecules in the literature, the rec
rocal density thicknesses are illustrated in Figs. 1 and 2.
weak shocks ofM,1.5, agreement between the first iterati
calculations and the Monte Carlo experiments@19# is excel-
lent, giving the correct limiting law. For strong shocks
M.2, the present work underestimates by about 30%
Monte Carlo results@20,21#, which are even worse than th
Mott-Smithvx

2 choice@22#. This discrepancy is regarded as
limitation of the lowest-order iteration, which is reduced b
the higher-order iterations. In Fig. 3 the normalized dens
profiles are compared with the calculations of the Mo
Smith vx

2 choice. The density profile shows a monotonic i
crease from upstream to downstream. The kinetic temp
ture profile, however, shows the maximum point within t
shock layer, which is absent in the Mott-Smith theory@23#.
The nonmonotonic profile occurs whenM.3.313. It is well
known that this kind of temperature profile is not a ma
ematical artifact but the result of atomistic dynami
@2,21,24,25#. The profiles of normalized kinetic temperatur
are compared in Fig. 4 with the Mott-Smith calculatio
where the normalized kinetic temperature is defined as

T* [~T2T~u!!/~T~d!2T~u!!.

FIG. 1. Dimensionless reciprocal density thickness of we
shock waves. The curves for Navier-Stokes and Burnett theories
the values of Chang@8#. s denotes the Monte Carlo result@19#.

FIG. 2. Dimensionless reciprocal density thickness of stro
shock waves. —, this work;•••, the Mott-Smithvx

2 choice;s, the
Monte Carlo result of Yen and Ng@20#; h, the Monte Carlo result
of Bird @21#.
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V. CONCLUSION

In conclusion, the Mott-Smith theory can be systema
cally improved by introducing an iterative scheme for t
calculations of unknown moments. At the lowest iterati
step, the evidence of improvement is clear. Following
suggestions of Ikenberry and Truesdell, there is a variety
iterative methods@16#. The other iterative methods will give
similar results as long as the initial values are calcula
using the Mott-Smith bimodal distribution function. The v
riety of iterative methods does not indicate the lack o
unique way to determine the unknown moments such a
the original Mott-Smith theory. The choice of iterativ

FIG. 3. Normalized density profiles vs reduced distance (x/l).
—, this work; •••, the Mott-Smithvx

2 choice.
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method depends mainly on the convergence, which wil
last give the exact result.
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